
From Streams to Reactive Streams

Oleg Tsal-Tsalko

JUG Lviv 2017

SOLUTION ARCHITECT AT EPAM SYSTEMS.
PASSIONATE DEVELOPER, SPEAKER, ACTIVE MEMBER OF
KIEV JUG.
PARTICIPATE IN DIFFERENT EDUCATIONAL INITIATIVES,
ENGINEERING EVENTS AND JCP/ADOPTJSR PROGRAMS.

OLEG TSAL-TSALKO

ABOUT ME

CONFIDENTIAL 3

The Reactive Manifesto
Today applications:

Deployed on everything from mobile devices to cloud-based clusters
Running thousands of multi-core processors
Millisecond response times
100% uptime

CONFIDENTIAL 4

CONFIDENTIAL 5

CONFIDENTIAL 6

Non-blocking architecture

Programming style change required:
•Can’t write imperative code anymore
•Can’t assume single thread of control
•Must deal with async results (listeners/callbacks)
•Everything becomes stream of events

CONFIDENTIAL 7

What is Reactive Programming?

An easy way of reaching a first intuition about what it's like is to imagine your
program is a spreadsheet and all of your variables are cells.

If any of the cells in a spreadsheet change, any cells that refer to that cell change
as well.

The basic idea behind reactive programming is that there are certain datatypes
that represent a value "over time".

Computations that involve these changing-over-time values will themselves have
values that change over time.

CONFIDENTIAL 8

Reactive programming
vs

Concurrent programming
Reactive programming first of all is about reactive data
Reactive programming helps to better utilize existing resources
Reactive programming helps to avoid blocking operations using non-blocking IO
Reactive programming is more about scaling vertically than scaling horizontally
Reactive programming promotes asynchronous processing but it could be synchronous as well.
Reactive programming can greatly benefit from concurrency and multithreading however it could
be single-threaded where necessary. Instead Reactive Streams provide transparency over
threading model used behind scenes.

CONFIDENTIAL 9

Reactive Use Cases
External Service Calls

• Abstract away blocking IO
Highly Concurrent Message Consumers

• Existing Reactive libraries provide convenient API for building highly
concurrent and high performance processing pipelines

Spreadsheets
• If application should be reactive in nature than it is obvious choice

Abstraction Over (A)synchronous Processing
• Existing Reactive libraries provide good abstraction from sync/async

processing details as well as from threading model behind

CONFIDENTIAL 10

Existing implementations

CONFIDENTIAL 11

Reactive Streams spec

CONFIDENTIAL 12

Reactive Streams spec

Reactive Streams is an initiative to provide a standard for asynchronous stream
processing with non-blocking back pressure.

The Problem
Handling streams of data—especially “live” data whose volume is not

predetermined—requires special care in an asynchronous system.

The most prominent issue is that resource consumption needs to be controlled such
that a fast data source does not overwhelm the stream destination.

Scope
The scope of Reactive Streams is to find a minimal set of interfaces, methods and

protocols that will describe the necessary operations and entities to achieve the goal—
asynchronous streams of data with non-blocking back pressure.

CONFIDENTIAL 13

What is back-pressure?

CONFIDENTIAL 14

Back-pressure
When fast publisher pushing messages to slow consumer queues
can overflow
Back-pressure allows subscriber to specify/control demand:

•subscriber requests # of items
•publisher produce up to requested items

If data source is hot and can’t be controlled publisher should have
particular policy in place: it might buffer or drop messages on
back-pressure

CONFIDENTIAL 15

Reactive Streams API

CONFIDENTIAL 16

Publish-Subscribe Flow

CONFIDENTIAL 17

Difference to CompletableFuture

CompletableFuture is push only model.
If you have a reference to the Future,

it means the task processing an asynchronous result is already
executing!

ReactiveStreams enable deferred pull-push interaction:
•Deferred because nothing happens before the call to
subscribe()

•Pull because at the subscription and request steps, the
Subscriber will send a signal upstream to the source and
essentially pull the next chunk of data

•Push from producer to consumer from there on, within the
boundary of the number of requested elements

CONFIDENTIAL 18

Reactive libraries generations

• 0th generation: Publish-subscribe based on Observer pattern
(Swing/AWT/Android)

• 1st generation: Rx.NET around 2010, Reactive4Java in 2011 and
early versions of RxJava in 2013 (backpressure is not supported,
synchronous cancellation issue)

• 2nd generation: RxJava redesigned (backpressure support and
operators composition)

• 3rd generation: Reactive-Streams specification compatible libs
(RxJava 2.x, Project Reactor and Akka-Streams)

• 4th generation: Fluent API with diff optimisations like operator-
fusion (RxJava 2.x redesigned, Project Reactor 2.5+ and eventually
Akka-Streams)

• 5+ generation: Reactive IO, transparent remote reactive queries and
more…

CONFIDENTIAL 19

Operator-fusion

Operator-fusion, one of the cutting-edge research topics
in the reactive programming world, is the aim to have two

of more subsequent operators combined in a way that
reduces overhead (time, memory) of the dataflow.

CONFIDENTIAL 20

Spring Reactor

CONFIDENTIAL 21

Spring Reactor evolution

CONFIDENTIAL 22

Reactor in Spring ecosystem

CONFIDENTIAL 23

It’s a simple Flux,
nothing to worry about…

There are basically three things you can do with Flux/Mono:
• operate on it (transform it, or combine it with other sequences)
• subscribe to it (it’s a publisher)
• configure it (modify the behaviour of subscribers)

CONFIDENTIAL 24

Simple example

CONFIDENTIAL 25

CONFIDENTIAL 26

Reactive Streams
vs

Java8 Streams
Programming model is very similar
Both heavily use operators chaining and lambdas

However purpose is different!!!
Reactive streams operate on reactive data and represent data over time
Java8 streams operate on collections and have all or nothing semantics

CONFIDENTIAL 27

Reactive streams lifecycle

•Assembly-time: This is the time when you write up
just().subscribeOn().map()

•Subscription-time: This is the time when a Subscriber subscribes
to a sequence at its very end and triggers a "storm" of
subscriptions inside the various operators.

•Runtime: This is the time when items are generated followed by
zero or one terminal event of error/completion

CONFIDENTIAL 28

ParallelFlux

CONFIDENTIAL 29

Join JavaDay Kyiv 2017

25Jug

Discount code

CONFIDENTIAL 30

Links

Exercises to practice: https://github.com/reactor/lite-rx-api-
hands-on
Examples shown: https://github.com/olegts/ReactiveStreams/
tree/master/src/test/java/org/reactivestreams/reactor/
javaday

Reactive Streams: https://github.com/reactive-streams/
reactive-streams-jvm
Project Reactor docs: https://projectreactor.io/docs

https://github.com/reactor/lite-rx-api-hands-on
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/olegts/ReactiveStreams/tree/master/src/test/java/org/reactivestreams/reactor/javaday
https://github.com/olegts/ReactiveStreams/tree/master/src/test/java/org/reactivestreams/reactor/javaday
https://github.com/olegts/ReactiveStreams/tree/master/src/test/java/org/reactivestreams/reactor/javaday
https://github.com/olegts/ReactiveStreams/tree/master/src/test/java/org/reactivestreams/reactor/javaday
https://github.com/reactive-streams/reactive-streams-jvm
https://github.com/reactive-streams/reactive-streams-jvm
https://github.com/reactive-streams/reactive-streams-jvm
https://projectreactor.io/docs

